ETHIRAJ COLLEGE FOR WOMEN (AUTONOMOUS)

DEPARTMENT OF MICROBIOLOGY

B.Sc. MICROBIOLOGY SYLLABUS TO BE EFFECTIVE FROM 2015-2016

ETHIRAJ COLLEGE FOR WOMEN DEPARTMENT OF MICROBIOLOGY

Revised Syllabus of JUNE 2015

Department of Microbiology is revising syllabi with effect from the academic year 2015-2016 with Part IV and Part V components. Part IV and Part V components will seek to build the capacity of the students and provide inputs for his/her social service and social analyzing capabilities.

The course duration is three years. Every academic year is divided into two semester sessions. Each semester will have a minimum of 90 working days and each day will have 5 working hours. Teaching is organized into a modular pattern of credit courses. Credit is normally related to the number of hours a teacher teaches a particular subject. It is also related to the number of hours a student spends learning a subject or carrying out an activity.

PREAMBLE

The Department of Microbiology submits changes and additions suggested in the UG curriculum that are

- Modification of course content in all courses.
- One Major Theory paper instead of two in the I, II, III and IV semesters.
- Conduct of Practical Exam at the end of each Year.

REGULATIONS

1. ELIGIBILITY FOR ADMISSION:

Candidates for admission to the first year of the Degree of Microbiology course shall require to have passed Biology / Botany and Zoology / Microbiology along with Physics and Chemistry in the Higher Secondary Examinations conducted by the Government of Tamil Nadu or an Examination accepted as equivalent thereto by the syndicate of the University of Madras.

2. ELIGIBILITY FOR THE AWARD OF DEGREE:

A candidate shall be eligible for the award of the Degree only if he/she has undergone the prescribed course of study for a period of not less than three academic years, passed the examination of all Six Semesters prescribed.

3. COURSE OF STUDY:

The main subjects of study for Bachelor Degree shall consist of the following:

PART – I : Foundation Courses exclusive for Languages.

PART – II : Foundation English

PART – III : Core subjects and Allied Subjects

PART – IV : Non Major Electives and Soft Skills.

PART – V : Extension Activities / Sports / NCC.

4. PASSING MINIMUM:

A candidate shall be declared to have passed in each Paper/Practical of all subject of the study wherever prescribed, if she secured NOT LESS THAN 40% of the marks prescribed for the end semester examinations and the total marks of continuous assessment and the end semester examinations.

5. CLASSIFICATION OF SUCCESSFUL CANDIDATES:

Successful candidates passing the examinations and securing the marks (i) 60 percent and above and (ii) 50 percent and above but below 60 percent in the aggregate shall be declared to have passed the examination in the FIRST and SECOND class respectively. All other successful candidates shall be declared to have passed the examination in the THIRD class.

Candidates who pass all the examination (Part I, II, II &IV) prescribed for the course in the FIRST APPEARANCE ITSELF ALONE are eligible for ranking.

DEPARTMENT OF MICROBIOLOGY ETHIRAJ COLLEGE FOR WOMEN (Autonomous)

B.Sc., Microbiology Course Profile (2015-2016)

	Course Code	Course Title	Hours/ Wk	Credits	CA Marks	End Sem Marks	Total
SEMESTI	E R- I				I		
Part I		Language I	6	3	40	60	100
Part II		English-I	4	3	40	60	100
Part III	MB15/1C/FM1	Fundamentals of Microbiology-I	7	5	40	60	100
Part III	BC15/1A/BC1	Allied Biochemistry –I	4	4	40	60	100
Part III	MB15/2C/PR1	Basic Techniques in Microbiology	3	-	-	-	-
Part III	BC15/2A/BPR	Allied Biochemistry Practical	2	-	-	-	-
Part IV	MB15/1N/PCH	Pet Care and Hygiene	2	3	-	-	50
	1a/b/c						
Part IV		Soft Skill	2	2	-	-	50
SEMESTH	E R- II						
Part I		Language II	6	3	40	60	100
Part II		English-II	4	3	40	60	100
Part III	MB15/2C/FM2	Fundamentals of Microbiology-II	7	5	40	60	100
Part III	BC15/2A/BC2	Allied Biochemistry –II	4	4	40	60	100
Part III	MB15/2C/PR1	Basic Techniques in Microbiology	3	4	40	60	100
Part III	BC15/2A/BPR	Allied Biochemistry Practical	2	2	40	60	100
Part IV	MB15/2N/GAL	Gardening and Landscaping	2	3	-	-	50
	1a/b/c						
Part IV		Soft Skill	2	2	-	-	50
Credits for I and II Semester = 46							

SEMEST	ER- III						
Part I		Language III	6	3	40	60	100
Part II		English-III	4	3	40	60	100
Part III	MB15/3C/BAI	Basic and Applied Immunology	7	5	40	60	100
Part III	MB15/3A/BIT	Allied- Bioinstrumentation	4	4	40	60	100
Part III	MB15/4C/PR2	Basic and Applied Immunology	3	-	-	-	-
Part III	MB15/4A/PR1	Bioinstrumentation, Computers And Biostatistics	2	-	-	-	-
Part IV		Soft Skill	2	3	-	-	50
Part IV		Environmental Studies	2	2	-	-	50
SEMESTI	ER- IV			I			I
Part I		Language IV	6	3	40	60	100
Part II		English-IV	4	3	40	60	100
Part III	MB15/4C/CMG	Basic concepts of Microbial Genetics	7	5	40	60	100
Part III	MB15/4A/COB	Allied- Computer applications and Biostatistics	4	4	40	60	100
Part III	MB15/4C/PR2	Basic and Applied Immunology	3	4	40	60	100
Part III	MB15/4A/PR1	Bioinstrumentation, Computers and Biostatistics	2	2	40	60	100
Part IV		Soft Skill	2	3	-	-	50
Part IV		Value Education	2	2	-	-	50
Credits fo	r III and IV Semes	ter = 46					
SEMESTER- V							

Part III	MB15/5C/BAC	Bacteriology	5	4	40	60	100
Part III	MB15/5C/SAM	Soil and Agricultural Microbiology	5	4	40	60	100
Part III	MB15/5C/MMP	Medical Mycology and Parasitology	5	4	40	60	100
Part III	MB15/5E/FMB	Food Microbiology	5	5	40	60	100
Part III	MB15/5E/BIO	Biotechnology	4	5	40	60	100
Part III	MB15/6C/PR3	Medical Microbiology	3	-	-	-	-
Part III	MB15/6C/PR4	Applied Microbiology	3	-	-	-	-
SEMESTE	ER- VI						
Part III	MB15/6C/ENM	Environmental Microbiology	6	4	40	60	100
Part III	MB15/6C/VIR	Virology	6	4	40	60	100
Part III	MB15/6C/GEN	Genetic Engineering	б	4	40	60	100
Part III	MB15/6E/INM	Industrial Microbiology	б	5	40	60	100
Part III	MB15/6C/PR3	Medical Microbiology	3	4	40	60	100
Part III	MB15/6C/PR4	Applied Microbiology	3	4	40	60	100
		Credits for V and V	VI Semes	ter = 4 7	•		
Part V- Ext	tension Activity – 1	credit					
		II B.Sc. BIOCHEM SEMESTER	IISTRY III				
Part III	MB15/3A/AM1	Allied Microbiology-I	4	4	40	60	100
Part III	MB15/4A/PR2	Allied Microbiology Practical	2	-	-	-	-
		SEMESTER	IV	1	1	1	
Part III	MB15/4A/AM2	Allied Microbiology-II	4	4	40	60	100
Part III	MB15/4A/PR2	Allied Microbiology Practical	2	2	40	60	100

Semester	Course Code	Course Title	Hours/ Wk	Credits	End Sem Marks
Semester I	MB15/1N/PCH	Pet Care and Hygiene	2	3	50
Semester-II	MB15/2N/GAL	Gardening and Landscaping	2	3	50

PART IV- NON MAJOR ELECTIVE OFFERED BY THE DEPARTMENT

Part V NCC/NSS/SPORTS/CSS/SPORTS/CSS/YRC/RRC/ROT/CERTIFICATE COURSE

TEMPLATE FOR EVALUATION PATTERN CONTINUOUS ASSESSMENT – THEORY (CORE AND ELECTIVE)

Semester	Course Code	Course Title	Continuous Assessment				
			Test I	Test II	Quiz/ Assignment/ Seminar/ Field Visit	Participatory Learning	Total
			10	10	10	10	40
Ι	MB15/1C/FM1	Fundamentals of Microbiology-I	10	10	10	10	40
II	MB15/2C/FM2	Fundamentals of Microbiology-II	10	10	10	10	40
III	MB15/3C/BAI	Basic and Applied Immunology	10	10	10	10	40
111	MB15/3A/BIT	Allied- Bioinstrumentation	10	10	10	10	40
	MB15/4C/CMG	Basic concepts of Microbial Genetics	10	10	10	10	40
IV	MB15/4A/COB	Allied-Computer applications and Biostatistics	10	10	10	10	40
	MB15/5C/BAC	Bacteriology	10	10	10	10	40
	MB15/5C/SAM	Soil and Agricultural Microbiology	10	10	10	10	40
V	MB15/5C/MMP	Medical Mycology and Parasitology	10	10	10	10	40
	MB15/5E/FMB	Food Microbiology	10	10	10	10	40
	MB15/5E/BIO	Biotechnology	10	10	10	10	40

	MB15/6C/ENM	Environmental Microbiology	10	10	10	10	40
	MB15/6C/VIR	Virology	10	10	10	10	40
VI	MB15/6C/GEN	Genetic Engineering	10	10	10	10	40
	MB15/6E/INM	Industrial Microbiology	10	10	10	10	40
		II B.Sc	e. BIOC	HEMIS	STRY		
III	MB15/3A/AM1	Allied Microbiology-I	10	10	10	10	40
IV	MB15/4A/AM2	Allied Microbiology-II	10	10	10	10	40

RUBRICS FOR CONTINUOUS ASSESSMENT EVALUATION

- Assignment Appearance/Content/Originality/Presentation/Schematic Representation and Diagram/Bibliography
- Seminar Organization/Subject Knowledge/Visual Aids/Confidence Level/ Presentation

Participatory - Answering Questions/Clearing Doubts/ Participation in Discussion/LearningAttendance/Communication and Language

TYPE OF VALUATION	VALUATION PATTERN	MARKS
CONTINUOUS	I Model Test (50 marks converted to 10 marks)	10
ASSESSMENT	II Model Test (50 marks converted to 10 marks)	10
	Maintenance of Observation	10
	Participation Learning	10
END SEMESTER EXAMINATION	End Semester Examination	60
	Total	100

CONTINUOUS ASSESSMENT - PRACTICALS

SEMESTER – I FUNDAMENTALS OF MICROBIOLOGY- I

Teaching Hours : 105 Hours Paper Code : MB15/1C/FM1 OBJECTIVES:

This paper provides

- Knowledge in scope of Microbiology.
- Understanding the diversity of microbial world.
- Basic concepts of Microbiological techniques

COURSE CONTENT :

UNIT I

History of Microbiology- Contributions of Scientists - Anton Von Leeuwenhoek, Louis Pasteur, Robert Koch, Edward Jenner, Alexander Flemming, Joseph Lister. Spontaneous generation Vs Biogenesis hypothesis - Germ theory of diseases- Koch postulates. Classification of Microorganisms - Three Kingdom, Whittaker's Five Kingdom and Eight kingdom. General characteristics of acellular microorganisms - (Viruses, Viroids, Prions) and cellular microorganisms (Bacteria, algae, fungi and protozoa), Differences between prokaryotic and eukaryotic microorganisms.

UNIT II

Prokaryotic cell structure – cell size, shape, arrangements, capsule, slime, S layer, fimbriae, flagella, pili ,Cell wall, Cell membrane, periplasmic space, ribosomes, mesosomes, nucleoid, inclusions bodies, gas vacuoles, Bacterial endospore and process of sporulation.

UNIT III

Microscopy - General Principles of optics in relation to Microscopy. Different components of light wave - UV, IR, Visible, Principles and Applications of Microscope-Magnification, Resolving power, Numerical Aperture. Principles and Applications - Bright Field, Dark Field, Phase Contrast, and Fluorescence Microscopy. Electron Microscope - Principles, Specimen preparation and Applications of Scanning and Transmission Electron Microscopy.

UNIT IV

Stains and Staining Techniques - Definition of auxochrome, Chromophores - acidic and basic Dyes, Natural dyes, Mordant and its functions. Classification of stains - Simple and Differential Staining. Principles and Procedures of Gram Staining, Acid Fast Staining, Endospore Staining, Metachromatic granule staining. Negative Staining - Capsule Staining.

UNIT V

Methods of Sterilization- Physical Methods - Mode of Action and Applications of Heat-Hot air oven, Autoclave, Tyndallisation, Low temperature - Freezing, Radiation – X rays, γ rays, Filtration - HEPA filters and Membrane filters. Chemical Methods - Mode of action and applications- Alcohol, Acid, Alkali, Halogen, Heavy Metals, Phenol and Phenol derivatives, Formaldehydes, Ethylene Oxide, Detergents.

9

20 Hours

20 Hours

20 Hours

25 Hours

20 Hours

Credits : 5 L T P: 4 3 0

- Pelczar M.J., Chan E.C.S. and KreigN.R.(2007)<u>Microbiology</u> 7th edn, McGraw-Hill New York
- 2. Prescott L.M, Harley J.P and Klein D.A, (2013)<u>Microbiology</u>9thedn, McGraw-Hill Publications
- 3. A.J.Salle, (1984) <u>Fundamental principles of bacteriology</u>, 7th edn, Tata McGraw-Hill Publications Ltd.

REFERENCES:

- 1. Stainer R.Y, Ingharam, Wheelis M.L. Painter (2010) <u>General Microbiology</u>, 5thedn Edition,MacMillan Press Ltd.
- 2. Tortora, G.J., Funke, B.R., Case, C.L (2013) Microbiology-An Introduction-11thedn.
- 3. Madigan M.T., Martinko J.M, Parker J. (2005). <u>Brock Biology of Microorganisms</u>, 11th edn, Pearson Prentice Hall International,Inc.
- 4. Nester E.W, Anderson D.G (2004) <u>Microbiology-A Human Perspective</u>, 4th edn McGraw Hill Publications.
- 5. Atlas.R (1997) Principles of Microbiology, 2nd edn, Wm.C.Brown publishers.

WEBSITES:

http://www.microbes.info/resourcses/general microbiology/ http://www.simhq.org/microbiology http://www.brookscole.com/microbio http://www.austincc.edu/rohde/noteref.htm http://www.vvc.edu/academic/biology/MacKayP2/pamshome.htm (bau)

QUESTION PAPER PATTERN

Time: 3Hours

Max Marks: 100

Section A- Answer all 10 questions (10 questions will be given covering all 5 Units) $10 \ge 20$ marks

Section B- Answer any 5 questions (8 questions will be given covering all 5 Units) 5 x 8 marks = 40 marks

SEMESTER – I

NON MAJOR ELECTIVE SUBJECT

PET CARE AND HYGIENE (For other discipline students)

Teaching Hours: 30 COURSE CODE: MB15/1N/PCH

OBJECTIVE:

This course will focus on health and care for animals

COURSE CONTENT

UNIT I:

Grooming and nutrition of pet-Introduction to pet animals-Dog and Cat-Bathing-Grooming aids-General care- Ear, Toe nails, Teeth -Nutrition-Home diet, Nutrient requirement-Feeding. Common pet problems, such as: allergies, bad breath, ear mites, fleas, itchy skin, paw problems, teething pain, weepy eyes and wounds

UNIT II:

Training of Pets -Training of Dogs-punishment-Picking up by scruff of neck, pushing nose down-Obedience training-Place of their own-Chewing

UNIT III:

Immunization of Pet animals-Preventive vaccination procedure - Rabies, Leptospirosis, Internal and External Parasites - First aid-Emergency medicines - How to find a good veterinarian.

RECOMMENDED TEXTBOOKS:

1. Tom Reed D.V. M. (1974) The Well Dog Books. A Random inc.

REFERENCES

- 1. Martin Dvm Goldstein, (1999), The Nature of Animal Healing: The Path to Your Pet's Health, Happiness, and Longevity, Hardcover, Publisher: Knopf
- 2. Kymythy Schultze, (1999), Natural Nutrition for Dogs and Cats: The Ultimate Pet Diet, Paperback, Publisher: Hay House
- 3. Sue Dallas, Emily Jewell, (2014). Animal biology and care, 3rd edn, Wiley Blackwell.

OUESTION PAPER PATTERN

SECTION A

Max.Marks: 50

Time: 2Hrs

Answer 10 questions (12 questions will be given)

10x5marks = 50

10 hrs

10hrs

10 hrs

Credits: 3 LT P: 200

12

SEMESTER - II FUNDAMENTALS OF MICROBIOLOGY- II

Teaching Hours: 105 Hours Paper Code : MB15/2C/FM2

OBJECTIVES:

This paper provides

- Cultivation of Bacteria and Pure Culture Techniques.
- Understanding of Microbial Growth and Physiology.
- Basics of cell division

COURSE CONTENT :

UNIT I

Nutrition and Growth of Bacteria - Photoautotrophs, Photoorganotrophs, Chemolithotrophs (Ammonia, Nitrite, Sulfur, Hydrogen, Iron oxidizing Bacteria), Chemoorganotrophs with examples. Nutrition transport mechanisms. Culture media -Types. Microbial Growth, Generation time and Growth rate. Growth Curve and Phases of Growth in Bacteria. Batch, Continuous and Synchronous cultures. Diauxic growth.

UNIT II

Measurement of Microbial growth - Quantitative Measurement of Bacterial growth by Cell mass, Cell number and Turbidity methods, Chlorophyll Estimation. Maintenance and Preservation of cultures – Sub-cultures, Mineral oil method, Lyophilisation. Reproduction - Binary fission, Mitosis and Meiosis- I and II

UNIT III

An overview of Metabolism - Break-down of Glucose - Embden Meyerhof Pathway, Pentose Phosphate Pathway, Entner-Doudoroff Pathway. Fermentation-Homolactic Fermentation, Heterolactic Fermentation, Mixed Acid Fermentation, Butanediol Fermentation. Stickland Reaction. Tricarboxylic Acid Cycle. An overview of Mitochondria structure. Electron Transport Chain and Oxidative Phosphorylation. Chemiosmosis.

UNIT IV

Photosynthesis - An Overview of chloroplast structure. Photosynthetic Pigments, Light Reaction-Cyclic and non-cyclic Photophosphorylation. Dark Reaction - Calvin Cycle.

UNIT V

Chemotherapeutic Agents – Definition of Antibiotics and Sulphonamides. Mechanism of action and Antimicrobial spectrum and Drug Resistance mechanism of Penicillin, Streptomycin, Tetracycline, Chloramphenicol, Nalidixic acid and Metronidazole.

20 Hours

20 Hours

25 Hours

20 Hours

20 Hours

Credits: 5 L T P: 4 3 0

- 1. Pelczar M.J., Chan E.C.S. and Kreig N.R.(2007) Microbiology 7th edn, McGraw-Hill New York
- 2. Prescott L.M, Harley J.P and Klein D.A,(2013) <u>Microbiology</u>.9thedn, McGraw-Hill Publications
- 3. Madigan M.T., Martinko J.M, Parker J. (2005). <u>Brock Biology of Microorganisms</u>, 11th edn, Pearson Prentice Hall International, Inc.

REFERENCES:

- 1. Stainer R.Y, Ingharam, Wheelis M.L and Painter. (2010). <u>General Microbiology</u>, 5th edn, MacMillan Press Ltd.
- 2. Tortora, G.J., Funke, B.R., Case, C.L (2013) <u>Microbiology-An Introduction</u>, 11th edn. Benjamin Cummings.
- 3. Lim D. (1998) Microbiology, 2nd edn, WCB McGraw Hill Publications.
- 4. Nester E.W, Anderson D.G, (2014) <u>Microbiology-A Human Perspective</u>, 4th edn, McGraw Hill Publications.
- 5. Wheelis M, (2010) <u>Principles of Modern Microbiology</u>, 1st edn. Jones and Bartlett Publication.

WEBSITES:

http://www.cyanosite.bio.purdue.edu/index.html http://www.beijerinck.bt.tudelft.nl http://www.eurekascience.com/Ican Do that/bacteria_cells.htm http://www.ucmp.Berkeley.edu/Bacteria/bacterialh.html http://www.austincc.edu/rohde/noteref.htm

QUESTION PAPER PATTERN

Time: 3Hours

Max Marks: 100

Section A- Answer all 10 questions (10 questions will be given covering all 5 Units) $10 \ge 20$ marks

Section B- Answer any 5 questions (8 questions will be given covering all 5 Units) 5 x 8 marks = 40 marks

MAJOR PRACTICAL BASIC TECHNIQUES IN MICROBIOLOGY

Teaching Hours: 90 Hours Paper Code MB15/2C/PR1

Credits: 3 L T P: 003

OBJECTIVE:

This paper focuses on

- Basic concepts of Microbiological techniques.
- Study on bacterial growth characteristics.
- 1. Cleaning of Glassware and Laboratory rules.
- 2. Microscopy Compound microscope Principle, Operation, Uses and Maintenance.
- 3. Principle and Methods of sterilization Moist heat autoclave, Dry heat Hot air oven and Filtration method Membrane filters
- 4. Quality control of sterilization- chemical and biological methods.
- 5. Smear Preparation
- 6. Simple staining
- 7. Differential staining-Gram staining
- 8. Direct examination of Algae Oscillatoria, Volvox.
- 9. Staining of fungi-LPCB Yeast-Candida; mold- Aspergillus.
- 10. Micrometry Determination of size of Yeast.
- 11. Demonstration of motility by Hanging drop method.
- 12. Measurement of pH of medium pH strips and pH meter.
- 13. Preparation of saline- Bacteriological and normal.
- 14. Preparation of Liquid media Peptone Water.
- 15. Solid media Basal- Nutrient agar, Enriched-Blood Agar, Selective EMB agar
- 16. Sterility check and growth characteristics of bacteria in basal, enriched and selective media.
- 17. Pipetting and transferring of liquids.
- 18. Pure culture method- Streak plate technique and study of colony morphology
- 19. Enumeration of bacteria- serial dilution-Pour plate and Spread plate method.
- 20. Antibiotic sensitivity testing Disk Diffusion- Kirby Bauer method.

QUESTION PAPER PATTERN:

Time: 6 Hours (3 Hrs, Two days)

Max Marks: 60

: 25 marks
: 15 marks
: 10 marks
: 10 marks

SEMESTER – II

NON MAJOR ELECTIVE SUBJECT

GARDENING AND LANDSCAPING (For other discipline students)

Teaching Hours: 30
COURSE CODE: MB15/2N/GAL

OBJECTIVES:

This paper provides basic knowledge of theoretical and technical aspects of gardening and landscaping

COURSE OUTLINE:

UNIT I: Introduction to Horticulture - Gardening - Layout and components of a garden. Techniques in gardening – cutting, grafting, and layering. Important plant species.

UNIT II:

Landscaping I - Lawn making and designs.

UNIT III:

Landscaping II - Construction techniques-planting designs and maintenance. Indoor landscaping, industrial landscaping and landscaping in residential areas and urban avenues.

RECOMMENDED TEXT BOOKS:

1. Taylor, P. (2006) Garden. Oxford University Press

REFERENCES:

1. William Flemer. (1972). Nature's guide to successful gardening and landscaping. Crowell publications.

2. Reilly, A. (1990) Home Landscaper. Home Planners.

3. Black and Decker. (1993). Landscape design and construction. Creative Pub Intl.

QUESTION PAPER PATTERN

Max.Marks: 50

SECTION A

Answer 10 questions (12 questions will be given)

10x5marks = 50

Time: 2Hrs

10 hrs

10 hrs

Credits: 3 LT P 2 0 0

10 hrs

SEMESTER – III BASIC AND APPLIED IMMUNOLOGY

Teaching Hours: 105Hours Course code: MB15/3C/BAI

OBJECTIVES:

This paper focuses on

- Basic Immunology
- Human Defense Mechanisms against Infections.
- Applications of Immunological Techniques
- Knowledge in Immune Response and Vaccines

COURSE CONTENT:

UNIT I:

Introduction - History, Scope of Immunology and Recent development. Cells of Immune System. Hematopoiesis - Lymphoid and Myeloid Lineage, Mononuclear - Phagocytic System.

UNIT II:

Lmphoid Organs – Primary - Bone Marrow, Thymus and Bursa of Fabricius, Secondary-Lymph Node, Spleen and MALT, Tertiary. CALT, GALT

UNIT III:

Antigens and Antibodies – Antigens - Factors influencing Antigenicity, Epitopes, Haptens, Super Antigen, Mitogen, Adjuvants. Antibodies-Structure, Classification-Types and Functions. Antigen – Antibody Interaction- Agglutination - Heamagglutination (*Salmonella* and its antibody reaction), Latex agglutination - CRP, ASO, RF. Precipitation - Double Immunodiffusion, SRID, Immuno-electrophoresis.

UNIT IV:

Host Parasite Relationship and Immunity - Introduction and Classification Innate and Acquired. Factors involved in Immunity,Complement, Immunoprophylaxis – Importance and Applications. Active and Passive Immunization, Advantages and Disadvantages of Immunization. Latest Immunization schedule. Vaccines – Types of Vaccines – Live, Killed, Subunit,

UNIT V:

Hypersensitivity – Introduction to Hypersensitivity Reactions. Type I – Mechanism, Primary Mediators, Secondary Mediators, Symptoms and test for Type I Hypersensitivity. Type II - Mechanism and Symptoms. Type III- Mechanism and conditions- Serum sickness, Arthus reaction, Glomerular Nephritis, Rheumatoid Arthritis Type IV- Mechanisms & types - Tuberculin, Contact Dermititis and Granuloma. Skin test – Immediate and Delayed.

20hrs

23 hrs

20hrs

22hrs

20hrs

Credits: 5 L T P 4 3 0

- 1. Kuby, J., (2007) Immunology, 2nd edn. H.W.Freeman and company. New York.
- 2 Janeway C, TraversP, Walport M, Shlomchik M., (2011) <u>Immunobiology</u>, 6th edn, Gerald Science
- 3. Dulsy Fatima and Arumugam., (1995), Immunology, Saras Publication.

REFERENCES:

- 1. Roitt R.I.M, (2005) Essential Immunology.10th edn. Blackwell Scientific Publishers.
- 2. Tizard, R.I. (2010), <u>Immunology An Introduction</u>. 4th edn. Saunders College Publishing, Philadelphia.
- 3. Nairn, R., and Helbert, M. (2005) <u>Immunology for Medical Students</u>. 2ndedn. Mosby International limited.
- 4. Pelczar M.J., Chan E.C.S. and Kreig N.R.(2007) Microbiology 7th edn, McGraw-Hill New York
- 5. Ananthanarayan and Jayaram Panicker. (2009) Textbook of Microbiology 8th edn Orient Longman

WEBSITES:

http://www.healthline.com http://www.everydayhealth.com http://www.organtransplants.com http://www.transplantindia.com http://www.nlm.nih.gov

QUESTION PAPER PATTERN

Time: 3Hours

Max Marks: 100

Section A- Answer all 10 questions (10 questions will be given covering all 5 Units) $10 \ge 20$ marks = 20 marks

Section B- Answer any 5 questions (8 questions will be given covering all 5 Units) 5 x 8 marks = 40 marks

SEMESTER – III ALLIED – BIOINSTRUMENTATION

Teaching Hours: 60 Hours Course code: MB15/3A/BIT

OBJECTIVES:

This paper provides

- Theoretical aspects of various instruments used in Microbiology
- Understanding of careful handling of laboratory instruments.
- Knowledge about applications of these Instruments.

COURSE CONTENT:

UNIT I:

Measurement of pH- Principle and working of pH strips and pH meter. Balances- physical and electronic balances. Micropipette - working, parts and its uses. Laminar air flow, Incubator and **BOD** incubator

UNIT II :

Centrifugation - Principle, working, uses and maintenance of Centrifuge - types of rotors and centrifuge. Electrophoresis - Definition, types - Paper Electrophoresis, Gel electrophoresis -Agarose gel, Polyacrylamide, Immunoelectrophoresis and isoelectric focusing.

UNIT III:

Spectroscopy - Principles and Applications of Colorimetry, UV and Visible Spectrophotometry, Turbidometry, Raman Spectroscopy, Fluorimetry. Atomic absorption spectroscopy.

UNIT IV:

Chromatography - Types, Principle and Applications of - TLC, Column Chromatography -Adsorption, Ion exchange, Affinity, Gas-Liquid and HPLC.

UNIT V:

Biosensors - Definition, Components of Biosensors, Types –Electrochemical, Enzyme, Environmental Biosensors. Applications - in Medicine, Pollution control, Industry and Military. Uses of radioisotopes in life sciences, radioactive labeling, Geiger-Muller and scintillation counter, autoradiography and its application

10 hrs

Credits: 4

LTP 310

10 hrs

15hrs

10hrs

15 hrs

- 1. Veerakumari, L. (2009). Bioinstrumentation-MJP publishers, Chennai.
- 2. Wilson K, and Walker J (2010). <u>Principles and Techniques of Biochemistry and Molecular</u> <u>Biology.</u> 7th edn Cambridge university press.
- 3. Webster, J.G. (2004). <u>Bioinstrumentation.</u> John Wiley & Sons (Asia) Pvt. Ltd, Singapore.

REFERENCES:

- 1. Rodney.F.Boyer, (2000), <u>Modern Experimental Biochemistry</u>, 3rd edn. Pearson Publication.
- 2. Jayaraman J (1989). Laboratory Manual in Biochemistry Wiley Eastrn Ltd., New Delhi.
- 3. Skoog A., West M. (1988). <u>Principles of Instrumental Analysis</u> W.B.Saunders Co., Philadephia.
- 4. N.Gurumani. (2009). Research Methodology for biological sciences. MJP publishers.
- 5. Ponmurugan. P and Gangathara PB (2013). Biotechniques. MJP publishers.

WEBSITES:

http://www.slideshare.net/karanppt/electrophoresis-13738605 https://en.wikipedia.org/wiki/Spectroscopy. http://study.com/academy/lesson/what-is-chromatography-definition-types-uses.html. http://ebooks.cambridge.org/chapter.jsf?bid=CBO9780511802737&cid=CBO9780511802 73A080 http://www.bme.ncku.edu.tw/files/classoutline/bioinstrumentation.pdf.

QUESTION PAPER PATTERN

Time: 3Hours

Max Marks: 100

Section A- Answer all 10 questions (10 questions will be given covering all 5 Units) $10 \ge 20$ marks = 20 marks

Section B- Answer any 5 questions (8 questions will be given covering all 5 Units) 5 x 8 marks = 40 marks

SEMESTER – IV BASIC CONCEPTS OF MICROBIAL GENETICS

Teaching Hours: 105 Hours Course code: MB15/4C/CMG

OBJECTIVES:

This paper focuses on

- DNA and RNA Structure and Replication
- Mutation and DNA repair mechanism.
- Gene Expression and transfer mechanism.

COURSE CONTENT:

UNIT I :

Structure of DNA. Factors that affect the Structure of DNA- Temperature, pH. Forms of DNA -A, B and Z. Supercoiling. Structure of RNA- tRNA, rRNA and mRNA. Plasmid -Classification, Structure and importance of Natural Plasmids

UNIT II:

Prokaryotic DNA Replication - Proof for Semi-Conservative Replication, Events involved in Replication fork, Enzymes involved in DNA Replication, Unidirectional and Bidirectional Replication. Rolling Circle Replication. Bacteriophage - Structure and Life cycle of Lytic Phage-Lambda, M13, T4, Lysogenic Phage - Lambda.

UNIT III:

Gene expression in Prokaryotes-Genetic Code, Transcription and Translation. Regulation of Gene Expression – Operon – lac, trp, Regulon- SOS

UNIT IV:

Mutation -Definition and Types - Spontaneous and Induced mutations. Ames test. DNA Repair Mechanism- Photo reactivation, Nucleotide repair. Excision repair, Methyl Directed Mismatch repair, SOS repair, Post replication repair.

UNIT V:

Gene Transfer Mechanisms - Conjugation - and its uses. Transduction-Generalised and Specalised, Transformation-Natural Transformation. Transposition and types of Transposition reactions. Recombination- Homologous and site specific recombination.

Credits: 5 LTP430

20hrs

20hrs

23hrs

22hrs

20hrs

- 1. Friefelder, D.(2008) Molecular Biology. Narosa Publishing House, New Delhi.
- 2. Trun., and Trempy, (2004) <u>Fundamental Bacterial Genetics</u>.Black well Science Ltd., Oxford.
- 3. Peter Paolella, (1998), Introduction to molecular biology, International edn, McGraw-Hill.

REFERENCES:

- 1. Russell P.J, (2009). Genetics- A Molecular Approach. 3th edn. Pearson international
- 2. Old R.W. and Primrose S.B. (1985) <u>Principles of Gene Manipulation</u> 4th edn. Blackwell Scientific Publication, London.
- 3. Hays W, (1969) <u>The Genetics of Bacteria and Viruses</u>. 2nd edn. Blackwell
- 4. R.C Dubey and D.K.Maheshwari, (2007) <u>A textbook of Microbiology</u>, 1st revised edn, S.Chand and company Ltd.
- 5 Prescott Harley Klein, (2009), Microbiology, 8th edn, McGraw-Hill International edn.

WEBSITES:

http://www.profiles.nlm.nih.gov/LL http://www.users.rcn.com/jkimwall.ma.ultranet/ biologypages/L/lacoperon.html http://www.bio.miami.edu/dana/250/250S11_7.html http://www.uic.edu/classes/bios/bios100/lectures/dna.htm http://www.study.com/academy/lesson/how-an-operon-controls-transcription.html

QUESTION PAPER PATTERN

Time: 3Hours

Max Marks: 100

Section A- Answer all 10 questions (10 questions will be given covering all 5 Units) $10 \ge 20$ marks = 20 marks

Section B- Answer any 5 questions (8 questions will be given covering all 5 Units) 5 x 8 marks = 40 marks

SEMESTER - IV

ALLIED - COMPUTER APPLICATIONS AND BIOSTATISTICS

Teaching Hours: 60 Hours. Course Code: MB15/4A/COB

Credits: 4 L T P 310

OBJECTIVES:

This paper provides

- Theoretical aspects of various Applications of Computer
- Understanding the basics of Biostatistics.

COURSE CONTENT:

UNIT I:

History of computer, introduction to computer, parts of computer, concept of hardware and software, types of computer and its applications.

UNIT II:

Binary coding system. Windows – introduction and working with windows. Concept of file, folder and directories.

UNIT III:

Introduction to MS office software concerning word processing, spread sheets and presentation software. Internet and its Applications

UNIT IV:

Biostatistics – Sampling, data collection and presentation. Types of data, methods of data collection, diagrammatic and graphical representation of frequency distribution. Measure of Central Tendency- Mean, Mode and Median.

UNITV:

Measure of Dispersion- Standard deviation and Standard error. Probability laws - Addition and Multiplication Laws. Test of Significance – Chi square and t-test.

22

10 hrs

10 hrs

15 hrs

10 hrs

15 hrs

- 1. Pranab Kr. Banerjee. (2009). <u>Introduction to biostatistics</u>. 3rd edn. S. Chand and Company Ltd.
- 2. N. Gurumani. (2009). <u>An Introduction to Biostatistics</u>- 2nd edn. MJP publishers.
- 3. Snedecar G.W. and Cochram W.G. (1967). Statistical Methods. Oxford Press.

REFERENCES:

- 1. Norman T.J.Bailey (1981). <u>Statistical methods in Biology</u> 2nd edn. Hodder & Stoughton.
- 2. Palanichamy S. and Manoharan M (1994). <u>Statistical methods for Biologists</u> 1st edn. Palani Paramount Publishers.
- 3. Veer Bala Rastogi.(2009). Fundamentals of Biostatistics. 2nd edn. Ane Books Pvt Ltd.
- 4. Arora and Malhan. (2009). Biostatistics. Himalaya Publishing House.
- 5. Sharma V, Ashok M and Shanker A (2008). <u>A text book of Bioinformatics</u>.1st edn, Rastogi Publications.

WEBSITES:

http://www.tutorialspoint.com/computer_fundamentals/computer_fundamentals_tutorial.pdf. http://www.nios.ac.in/media/documents/sec229new/lesson%201.pdf. http://sphweb.bumc.bu.edu/otlt/mph-modules/bs/bs704_biostatisticsbasics/. http://www.biostat.ucla.edu/ http://www.biostatistics.com/

QUESTION PAPER PATTERN

Time: 3Hours

Max Marks: 100

Section A- Answer all 10 questions (10 questions will be given covering all 5 Units) 10 x 2 marks = 20 marks

Section B- Answer any 5 questions (8 questions will be given covering all 5 Units) 5 x 8 marks = 40 marks

MAJOR PRACTICAL BASIC AND APPLIED IMMUNOLOGY

Teaching Hours: 90 Hours Course code: MB15/4C/PR2

Credits: 4 L T P 0 0 3

OBJECTIVE:

This paper focuses on

- Basic concepts of Immunolgical Techniques.
- Understanding Principles of various Antigen and Antibody reactions

COURSE CONTENT

- 1. Hemagglutination Blood grouping ABO and Rh typing- Slide method.
- 2. Total count of RBC
- 3. Total count of WBC
- 4. Differential count of Blood cells.
- 5. Separation of Buffy coat Ficoll Hypaque method.
- 6. Bacterial Agglutination.
- 7. Agglutination- ASO
- 8. Agglutination RA
- 9. Agglutination-HCG
- 10. Agglutination-CRP
- 11. Flocculation RPR
- 12. WIDAL Slide method.
- 13. WIDAL Tube method.
- 14. Precipitation Reaction Immunodiffusion Ouchterlony patterns.
- 15. Precipitation Reaction Immunodiffusion SRID
- 16. Immunoelectrophoresis –Double Immunodiffusion
- 17. Serum immunoelectrophoresis
- 18. Counter Immunoelectrophoresis
- 19. Coomb's test
- 20. ELISA Demonstration

QUESTION PAPER PATTERN:

Time: 6 Hours (3 Hrs, Two days)

Max Marks: 60

Major practical	: 25 marks
Minor practical	: 15 marks
Spotters (5 x 2)	: 10 marks
Record	: 10 marks

ALLIED PRACTICAL BIOINSTRUMENTATION, COMPUTERS AND BIOSTATISTICS

Teaching Hours: 60 Hours Course code: MB15/4A/PR1

Credits: 2 L T P 002

OBJECTIVE:

This paper provides

- Knowledge in working principles of laboratory instruments.
- Knowledge in application of biostatistics
- An overview of applications of computer in biology.

COURSE CONTENT

- 1. Preparation of buffer solutions-phosphate buffer, acetate buffer, tris buffer. Measurement and adjustment of pH for prepared media or solution.
- 2. Principle and working of Micropipette.
- 3. Principle & working of
 - a. Colorimeter
 - b. UV-Spectrophotometer
- 4. Principle and Working of BOD Incubator
- 5. Separation of serum, plasma and bacterial culture using centrifuge
- 6. Separation of lipids/ amino acids/ sugars/ organic acids by paper/TLC Chromatography
- 7. To separate a mixture of compounds (plant pigments, dyes) by Column Chromatography.
- 8. Agarose Gel electrophoresis
- 9. ELISA Reader
- 10. Demonstration of PCR
- 11. Representation of statistical data by (a.) Histograms (b) Ogive curve c) Pie diagrams.
- 12. Determination of Statistical Averages / Central Tendency.
 - (a). Arithmetic Mean (b) Median (c) Mode
- 13. Determination of measures of dispersion(a) Mean Deviation (b) Standard Deviation (c) Standard error
- 14. Tests of significance application of following;(a) Chi Square test (b) t –test
- 15. Computer Operations getting acquainted with different parts of Computer.
- 16. Creating Files, Folders and Directories.
- 17. Applications of Computer in Biology using MS Office(a) MS Word (b) MS Excel (c) Power Point
- 18. Creating an e- mail account. Sending and receiving mails.
- 19. An introduction to Internet, Search Engines, Websites.
- 20. Browsing and Downloading.

QUESTION PAPER PATTERN

(Time-3hrs, One day)

Max Marks-60

Major practical: 30 marksMinor practical: 20 marksRecord: 10 marks

SEMESTER V BACTERIOLOGY

Teaching Hours: 75 Hours Course code: MB15/5C/BAC

Objectives:

This paper focuses on

- Understanding the mechanisms of bacterial infections
- Knowledge to prevent and manage the infections

COURSE CONTENT:

UNIT I:

General Bacteriology. Classification of Bacteria.Virulence factors and pathogenicity. Collection, transport and processing of Specimens for diagnosis of baceterial infection.

UNIT II:

Gram Positive Bacteria - Morphology, classification, cultural characteristics, pathogenicity, laboratory diagnosis, prevention and control of infections caused by *Staphylococcus, Streptococci,, Corynebacterium, Mycobacterium.*

UNIT III:

Gram Negative Bacteria - Morphology, classification, cultural characteristics, pathogenicity, laboratory diagnosis, prevention and control of infections caused by *Enterobacteriaceae – Escherichia coli, Klebsiella, Proteus, Salmonella, Shigella, Vibrio, Pseudomonas, Haemophilus, Bordetella, Neisseria.*

UNIT IV:

Spiral Forms and Non-cultivable Bacteria - Morphology, classification, cultural characteristics, pathogenicity, laboratory diagnosis, prevention and control of infections caused by *Helicobacter*, *Spirochaetes* - *Treponema*, *Leptospira*, *Borrelia*, *Mycoplasma*, *Rickettsiae*, *Chlamydiae*.

UNIT V:

Zoonotic Bacterial Infections – Morphology, classification, cultural characteristics, pathogenicity, laboratory diagnosis, prevention and control of infections caused by *Bacillus, Yersinia, Brucella*.

15 hours

20 hours

20 hours

10 hours

10 hours

Credits: 4

LT P: 320

- 1. Ananthanarayanan, R, & Panicker, C.K.J. (2005). Textbook of Microbiology- Orient Longman.
- Greenwood, D., Slack, R.B., & Peutherer, J.F. (2002) <u>Medical Microbiology</u> 14th edn. Churchill Livingston London.
- 3.<u>Medical Micrbiology</u>. (2008) MIMS. Elsevier Ltd. 5th edition.

REFERENCES:

- 1. Topley And Wilson's , (1990), Principles of Bacteriology, Edward Arnold, London.
- 2. Topley And Wilson's . (1997), <u>Bacterial Infections</u>. Edward Arnold, London.
- 3. Jawetz, E., Melnic, J.L. and Adelberg, E.A. (2000), <u>Review of Medical Microbiology</u>, 19th edn. Lange Medical Publications, U.S.A.
- 4. Williams and Wilkins, Holt.(1994), <u>Bergey's Manual of Determinative Bacteriology</u>, 9th edn. Baltimore, USA.
- 5. Collee, J.C., Duguid, J.P., Fraser, A.C. and Marimon, B.P. (1996), <u>Mackie and McCartney</u> <u>Practical Medical Microbiology</u>, 14th edn. Churchill Livingstone, London.

WEBSITES

http://www.microbiologyonline.org.uk/. http://www.asm.org/. http://www.textbookofbacteriology.net/. http://archives.microbeworld.org/resources/links.aspx. http://bacteriology.omicsgroup.com/.

QUESTION PAPER PATTERN

Time: 3Hours

Max Marks: 100

Section A- Answer all 10 questions (10 questions will be given covering all 5 Units) 10 x 2 marks = 20 marks

Section B- Answer any 5 questions (8 questions will be given covering all 5 Units) 5 x 8 marks = 40 marks

SEMESTER V SOIL AND AGRICULTURAL MICROBIOLOGY

Teaching Hours: 75 Hours Course code: MB15/5C/SAM

OBJECTIVES:

This paper focuses on

- Understanding Soil microbes and the Interactions among them.
- Role of microbes in Soil Fertility and Plant Diseases.

COURSE CONTENT:

UNIT I: Soil Microbiology – Physical and Chemical Properties of Soil. Soil Profile and Structure. Diversity and Distribution of Microbes in Soil - Bacteria, Actinomycetes, Algae, Fungi and Viruses.

UNIT II:

Microbial Interactions - Mutualism, Commensalism, Amensalism, Synergism, Competition, Parasitism. Rhizosphere, Phyllosphere, Mycorrhizae

UNIT III:

Biogeochemical Cycles - Carbon Cycle, Nitrogen Cycle - Fixation of Molecular Nitrogen, Nitrification and Denitrification, Sulphur Cycle and Phosphorus Cycle.

UNIT IV:

Plant Pathology - Microbial Diseases of Plant-Bacterial - Citrus Canker, Soft Rot in Carrot, Fungal -Red Rot of Sugar Cane, Tikka Disease of Groundnut, Fusarial Wilt in Cotton, Viral - Mosaic Disease in Tobacco. Prevention and Control of Plant Diseases.

UNIT V:

Soil fertility - Definition and Soil Requirement for Agriculture. Production, Application and Uses of Biofertilizers - VAM, Rhizobium, Azotobacter Azospirillum and Cyanobacteria. Biopesticides-Bacterial, Fungal and Viral.

20hrs

15 hrs

10 hrs

20 hrs

10 hrs

Credits:4

LT P: 320

- 1. SubbaRao.N.S. (2004), Soil Microorganisms and Plant Growth, Oxford and IBH Publishing Pvt Ltd
- 2. Atlas, R.M., and Bartha, R. (1998), <u>Microbial Ecology Fundamentals and Applications</u>, 3rd edn.Benjamin Cummings. Redwood City. C. A.
- 3. Vijaya R K, (2004). Environmental Microbiology. 1st edn, MJP Publishers, Chennai.

REFERENCES:

- 1. SubbaRao.N.S.(1995), <u>Biofertilizers in Agriculture and Forestry</u>, 3rd edn. Oxford and IBH Publishing co. Pvt Ltd.
- 2. Paul, E.A. and Clark, F.E, (1989), <u>Soil Microbiology and Biochemistry</u>. Academic Press, London.
- 3. Alexender, M, (1991), Introduction to Soil Microbiology. John Wiley and Sons, NewYork.
- 4. Butler, E.J, (1987), Fungi and Disease in plants. Thacker Spink and Co., Calcutta.
- 5. Agrios, G.N, (2004), Plant Pathology, 2nd edn Press, New York.

WEBSITES

http://www.studentsguide.in http://www.en.wikipedia.org https://www.scribd.com http://www.freebookcentre.net http://www.microbiology procedure.com https://www.scribd.com

QUESTION PAPER PATTERN

Time: 3Hours

Max Marks: 100

Section A- Answer all 10 questions (10 questions will be given covering all 5 Units) $10 \ge 20$ marks = 20 marks

Section B- Answer any 5 questions (8 questions will be given covering all 5 Units) 5 x 8 marks = 40 marks

SEMESTER V MEDICAL MYCOLOGY AND PARASITOLOGY

Teaching Hours: 75 Hours Course code: MB15/5C/MMP

Credits: 4 LT P: 320

OBJECTIVES:

This paper focuses on

- Mechanisms of Fungal Infections.
- Methods of Prevention and Management of Fungal Infections.

COURSE CONTENT:

UNIT I:

General Mycology - Morphology, Taxonomy and Classification of Medically Important Fungi-Mycotoxins and Antifungal agents. Superficial Mycoses - pathogenesis, laboratory diagnosis and treatment of Pityriasis versicolor, Tinea nigra, Piedra and Dermatophytoses. Subcutaneous Mycoses- pathogenesis, laboratory diagnosis and treatment of Mycetoma, Sporotrichosis, Chromoblastomycosis and Phaeohyphomycosis.

UNIT II:

Systemic Mycoses - pathogenesis, laboratory diagnosis and treatment of Histoplasmosis, Blastomycosis, Coccidioidomycosis and Paracoccidioidomycosis. Opportunistic Mycoses pathogenesis, laboratory diagnosis and treatment of Cryptococcosis, Candidiasis, Aspergillosis, Zygomycosis. Pneumosystosis.

UNIT III:

Introduction to Medical Parasitology. Classification of Protozoa. Lifecycle, Pathogenesis, Lab diagnosis and Control of intestinal Protozoans - Entamoeba and Balantidium, Genito-Urinal Protozoans - Giardia, Trichomonas. Protozoology - Lifecycle, Pathogenesis, Lab diagnosis and Control of Blood and Tissue Protozoans - Plasmodium, Leishmania, Trypanosoma and Toxoplasma.

UNIT IV:

Helminthology - Platyhelminthes - General characters of Cestodes- Lifecycle, Clinical features, Lab diagnosis and Control of Taenia, Echinococcus. General characters of Trematodes - Fasciola hepatica, Fasciolopscis buskii, Schistosoma, Paragonimus. Nemathelminthes – General characters of Nematodes- Lifecycle, Clinical features, Lab diagnosis and Control of Ascaris, Strongyloides Ankylostoma, Enterobius, Wuchereria and Dracunculus.

UNIT V:

Clinical Mycology - Collection, Transport and Storage of Fungal Specimens. Clinical Parasitology-Collection, Transport and Processing of Specimen.

20 hours

15 hours

10 hours

30

10 hours

20 hours

- 1. Jagadish Chander. (1996). <u>A Text book of Medical Mycology</u>, New Delhi.
- 2. Parija S.C, (1996). <u>Text book of Medical Parasitology</u>. Orient Longman.
- 3. Chatterjee, (1986). Medical Parasitology. Tata McGraw Hill.

REFERENCES

- 1. Alexopolus, C.J., and Mis, C.W. (1979). Introductory Mycology, 3rd edn. Wiley, New York.
- 2. Topley And Wilson's. (1988). Principles of Mycology, Edward Arnold, London.
- 3. Levanthal, R. and Cheadle, R.S. (1979). Medical Parasitology. S.A. Davies Co., Philadelphia.
- 4. Arora, D.R. and Arora, B. (2002). Medical Parasitology, 1st edn. CBS Publishers & Distributors, NewDelhi.
- 5. Schmidt G.Dand Roberts L.S. (1981). Foundations of Parasitology, 2nd edn, Mosby, St. Louis.

WEBSITES:

http://www.mycology.adelaide.edu.au/. https://www.oxbridgenotes.co.uk/revision_notes/veterinary-medicine-university-ofnottinghamcardiorespiratory-system/samples/parasitology. http://medicalppt.blogspot.com/2012/03/parasitology-lecture-notes.html. http://www.phsource.us/PH/PARA/Chapter_6.htm http://nematode.unl.edu/Wormgen.htm

QUESTION PAPER PATTERN

Time: 3Hours

Max Marks: 100

Section A- Answer all 10 questions (10 questions will be given covering all 5 Units) $10 \ge 20$ marks = 20 marks

Section B- Answer any 5 questions (8 questions will be given covering all 5 Units) 5 x 8 marks = 40 marks

SEMESTER V FOOD MICROBIOLOGY

Teaching Hours: 75 Hours Course code: MB15/5E/FMB

OBJECTIVES:

- Students will gain an understanding of spoilage microorganisms and how their effects on food.
- Students will be able to think critically about problems and issues concerning beneficial and harmful microorganisms in foods.

COURSE CONTENT:

Introduction to Food Microbiology –Scope of Food Microbiology, Factors (Extrinsic and Intrinsic) affecting microbial Growth in Food. Principles of Preservation - Asepsis, High Temperature, Low Temperature, Drying and Food Additives.

UNIT II:

UNIT I:

Microorganisms in Foods and methods for detection: Fresh meat, Processed meat, poultry, Fish and sea foods- Culture, Microscopic, and Sampling Method for detecting microbes, Physical, Chemical methods, Whole animal assays, Immunological methods.

UNIT III:

Food Borne Infections and intoxication–Bacterial-Bacillus, Brucella, Clostridium and Salmonella. Food intoxication-Staphylococcus and Botulism. Fungi-Mycotoxins & their types. Toxigenic Protozoa, Algae and Viruses. Food borne outbreaks and lab testing procedures. Preventive measures.

UNIT IV:

Nutritional &therapeutic importance-Cheese, Yogurt, Kumis, Kefir, Acidophilus milk, Probiotics and Bread. Food packaging materials, Properties and benefits. Genetically modified foods. Biosensors in food. Food Laws and Standards in India (Food Safety and Standards (FSS) Act, 2006, FSS Rules and Regulations, 2011. Export (Quality Control & Inspection), Act, 1963 and Rules, Bureau of Indian Standards.

UNIT V:

Good Hygiene Practices, Sanitation in manufacture and retail trade; Food control agencies and their regulations, hazard analysis and critical control points (HACCP); GMP, Plant sanitation-employees' health standard, waste treatment, disposal, quality control. Recent trends and development in food technologies in India.

15 hrs

15 hrs

Credits:5

LT P: 320

15 hrs

15 hrs

15 hrs

- 1. Frazier, W.C., &West off, D.C. (1988). <u>Food Microbiology</u> 4thedn. Tata McGraw Hill Publishing Company Ltd. New York
- 2. Jay J.M. (2005). Modern Food Microbiology, CBS Publishers and Distributors., New Delhi
- 3. Prescott and Dunn, (1982), Industrial Microbiology, CBS Publishers and Distributors.

REFERENCES:

- 1. Robinson R. K. (2000). Dairy Microbiology, Elsevier Applied Science, London.
- 2. Adams M.R, and Moss M.D, (2005). <u>Food Microbiology</u>, New Age International Pvt. Ltd., Publishers.First edition.
- 3. Banwarst. G.J. (2003). Basic Food Microbiology, CBS Publishers and distributors.
- 4. Hobbs, B.C. and Roberts, D, (1968), Food Poisoning and Food Hygiene. Edward Arnold: London.
- 5. Vijaya R K, (2004). FoodMicrobioloy. MJP Publishers, Chennai.First edition.

WEBSITES

http://www.fda.gov/food/food safety.html http://www.microbiology procedure.com http://www.vm.cfsan.fda.gov/-Ird/haccp.html http://www.nal.usda.gov/fnic/foodborne/foodborn.htm http://www.dfst.csiro.au/icmsf.htm

QUESTION PAPER PATTERN

Time: 3Hours

Max Marks: 100

Section A- Answer all 10 questions (10 questions will be given covering all 5 Units) $10 \ge 20$ marks = 20 marks

Section B- Answer any 5 questions (8 questions will be given covering all 5 Units) 5 x 8 marks = 40 marks

SEMESTER V BIOTECHNOLOGY

Teaching Hours: 60 Hours Course code: MB15/5E/BIO

OBJECTIVES:

This Paper provides Knowledge in

- **Basics of Biotechnology**
- Applications of Biotechnology in Human Welfare

COURSE CONTENT:

UNIT-I Introduction- historical and recent developments in biotechnology- immobilization of cells and enzymes and its applications.

UNIT-II

Plant biotechnology-media and equipment for plant tissue culture- cell and organ culture, micropropagation-somatic hybridization, Ti plasmid – structure and strategies of gene transfer using Ti plasmid in plants and its applications.

UNIT-III

Animal biotechnology- principles of animal cell culture, media and equipment for animal cell culture - primary and secondary cultures- establishment of cell lines.

UNIT IV

Biotechnology for human welfare- production of insulin, interferons - blood products, synthetic vaccines. Human gene therapy- germline and somatic cell therapy- gene therapy for cancer.

UNIT V

Social Aspects of biotechnology- legal, social and ethical aspects of biotechnology, Intellectual Property Rights (IPR), patents and trademarks. patents - definition and conditions for patentabilitybiological warfare.

15 hrs

10 hrs

10 hrs

15 hrs

10 hrs

Credits: 5 LT P: 310

- 1. Glick B.K. and Pasternak, J.J. (1994) <u>Molecular Biotechnology. Principles and Applications of Recombinant DNA</u>. ASM Press, Washington, DC.
- 2. Crichton. M. (2014). Essentials of Biotechnology. Scientific international Pvt Ltd.New Delhi.
- 3. Tandon. N. (2014). Tissue Science Technology. Random Publications, New Delhi

REFERENCES:

- 1. R.C.Dubey, (1993). Textbook of Biotechnology S. Chand & Company Ltd
- 2. Lee Yuan Kun (2003). <u>Microbial Biotechnology- Principles and Applications-</u> 2nd Edition World Scientific
- 3. H.K.Das (2010). Textbook of Biotechnology Wiley dream tech.
- 4. V. Kumaresan.(2015). Biotechnology Saras Publication.
- 5. B.D. Singh. (2014). Biotechnology Kalyani Publishers

WEBSITES

http://textbook of bacteriology.net http://www.microbiologyonline.org http://www.iprlawindia.org. http://www.springer.com http://www.nptel.ac.in

QUESTION PAPER PATTERN

Time: 3Hours

Max Marks: 100

Section A- Answer all 10 questions (10 questions will be given covering all 5 Units) $10 \ge 2 \text{ marks} = 20 \text{ marks}$

Section B- Answer any 5 questions (8 questions will be given covering all 5 Units) 5 x 8 marks = 40 marks

SEMESTER VI ENVIRONMENTAL MICROBIOLOGY

Teaching Hours: 90 Hours Course code: MB15/6C/ENM

OBJECTIVES:

This paper provides knowledge on

- Environmental aspects of Microbiology
- Role of Microorganisms in Bioremediation and Biodegradation

COURSE CONTENT:

UNIT I:

Microbiology of Air - Introduction to Atmospheric Layers, Sources of Microorganism, Air Micro Flora -Indoor and Outdoor Air. Factors affecting Air Micro-flora, Enumeration of Microbes in Air- Air sanitation- Air Borne Diseases

UNIT II:

20 hrs Microbiology of Introduction, Natural Distribution Water waters, of Microorganisms in the Aquatic Environment, Sources Types Water and of Indicators Pollution, Biological of Water Pollution. Determination of the Filtration, Biological quality Water MPN Index. Membrane Oxygen of -Demand. Water Purification in Municipal Water Supply, Parameters of Potable Water, Water Borne Diseases.

UNIT III:

UNIT IV: Biofuel Production - Ethanol, Methane and Hydrogen. Biodegradation - Lignin. Xenobiotics -Halocarbons, PCB and Synthetic polymers .Microbial Leaching of ores.

Microbiology of Sewage- BOD- Waste Water Treatment - Primary - Secondary

UNIT V:

Biodeterioration of Paper, Leather and Wood. Single cell proteins – Definition and advantages, bacterial protein production, Vermicomposting - Pit and windrow method

20 hrs

Credits: 4

LT P: 420

Tertiary Treatment - Disposal of Solid Wastes - Composting and Landfill.

20 hrs

20 hrs

10 hrs

- 1.Atlas R. M and Bartha R. (1998). <u>Microbial Ecology Fundamentals and Applications</u> 3rd edn. Benjamin Cummings. Redwood City .CA
- 2. Daniel. C.J., (1999). Environmental aspects of Microbiology, Bright Sun Publications
- 3. Vijaya R K, (2004). Environmental Microbiology. MJP Publishers, Chennai. First edition.

REFERENCES:

- 1. Mitchell.R,.(1999). <u>Introduction to Environmental Microbiology</u>. Prentice- Hall Inc. Englewood Chiffs-New Jersey.
- 2. Rheinheimer .G, (2007). <u>Aquatic Microbiology</u>. 2nd edn. John Wiley And Son, London.
- 3. Lynch, J.M. and Poole, N.J.(1980). <u>Microbial Ecology: A. Conceptual Approach</u>. Blackwell Scientific Publications, London
- 4. Gregory, P.H. and Monteth, (1980). <u>Airborne Microbes</u>. Cambridge University Press, Cambridge, UK.
- 5. Scragg, A, (2005). Environmental Biotechnology. Pearson Education Ltd., England.

WEBSITES

http:// www.en.wikipedia.org http://www.eplantscience.com http:// www.microbiology procedure.com http://www.ttu.ee/public/k/Keemia http:// www.freebookcentre.net

QUESTION PAPER PATTERN

Time: 3Hours

Max Marks: 100

Section A- Answer all 10 questions (10 questions will be given covering all 5 Units) $10 \ge 20$ marks

Section B- Answer any 5 questions (8 questions will be given covering all 5 Units) 5 x 8 marks = 40 marks

SEMESTER VI VIROLOGY

Teaching Hours: 90 Hours Course code: MB15/6C/VIR

OBJECTIVES:

This paper focuses on

- Understanding the pathogenesis and disease manifestations of viral infections
- Knowledge to prevent and manage the infections

COURSE CONTENT

UNIT I:

General Virology - historical perspectives in Virology, general properties of viruses - morphology and classification of viruses infecting man, replication of virus. Phages- structure, lytic and lysogenic cycle. Cultivation of viruses – inoculation in animals, embryonated eggs and tissue culture.

UNIT II:

DNA viruses - Pox virus- Small pox, Cow pox, Vaccinia and Molluscum contagiosum, Herpes Virus - Varicella, HSV, Cytomegalovirus and Epstein Barr Virus, Hepatitis virus - HAV, HBV, HCV, HDV. Adenovirus and Papova virus.

UNIT III:

RNA viruses - Picorna Virus- Polio Virus, Rhabdovirus- Rabies, Orthomyxovirus- Influenza virus, Paramyxovirus - Parainfluenza, Mumps and Measles, Togavirus- Rubella virus, Corona - SARS virus. Retro Virus - Human Immunodeficiency virus.

UNIT IV:

Miscellaneous viruses - arthropod borne virus- dengue, chikungunya, Japanese B encephalitis. Viriods and Prions. Emerging viral infections

UNIT V:

Clinical Virology - Collection, handling and processing of specimens for detection by histological, electron microscopy, serological and molecular methods - PCR. Viral vaccines, interferons and antiviral drugs

10 hrs

20 hrs

20 hrs

20 hrs

20 hrs

Credits: 4 LT P: 420

- 1. Jawetz, E., Melnick, J.L. and Adelberg, E.A., (1991), <u>Review of Medical Microbiology</u> 19thedn. Lange Medical Publications, USA.
- 2. Luria, S.E., Darnel, J.E., Jr., Baltimore, D. and Campbell.A, (1978), <u>General Virology</u>, 3rd edn. John Wiley & Sons, New York.
- 3. Greenwood, D., Slack, R.B., and Peutherer, J.F,(1993), <u>Medical Microbiology</u> 14th edn. Churchill Livingston London

REFERENCES:

- 1. Morag, and Timbury, M.C,(1994) <u>Medical Virology</u> 10thedn. Churchill Livingston.
- 2. Dimmock, N.J., and Primrose, S.B., (1994) <u>Introduction to Modern Virology</u> 4thedn. Blackwell Scientific Publications, Oxford.
- 3. Fenner, F. and White, D.O, (1994) Medical Virology. Academic Press, New York.
- 4. Conrat, H.F., Kimball, P.C. and Levy, J.A., (1994), Virology, 3rdedn. Prentice Hall, New Jersey.
- 5. S.J. Flint. (2009). <u>Principles of Virology. Vol I: Molecular Biology, Vol. II: Pathogenesis and</u> <u>Control</u>. Third edn, ASM Press

WEBSITES

http://www.CDC.GOV/ http://www.virology.net/ http://www.vaccineinformation.org/ http://www.asm.org/ http://www.microbiologyonline.org.uk/

QUESTION PAPER PATTERN

Time: 3Hours

Max Marks: 100

Section A- Answer all 10 questions (10 questions will be given covering all 5 Units) 10 x 2 marks = 20 marks

Section B- Answer any 5 questions (8 questions will be given covering all 5 Units) 5 x 8 marks = 40 marks

SEMESTER VI GENETIC ENGINEERING

Teaching Hours: 90 Hours Course code: MB15/6C/GEN

OBJECTIVES:

This paper provides knowledge in

- Concepts and Techniques in genetic engineering.
- Exploiting Microbes for Human Welfare

COURSE CONTENT:

UNIT I: 15 hrs Introduction - history of rDNA technology. isolation of bacterial, phage and plasmid DNA. Enzymes involved in genetic engineering - restriction endonucleases, ligases, reverse transcriptase, DNA polymerase- use of linkers and adapters.

UNIT II:

Cloning vectors - structure and uses of pBR 322, pUC, cosmids, lambda phage based vectors, phagemids, shuttle vectors, YAC and Ti plasmid.

UNIT III:

Cloning methods - steps involved in cloning in *E.coli* - artificial methods of transformation- methods of selection of recombinants- genomic library.

UNIT IV:

Molecular Techniques - southern blotting, northern blotting, western blotting, DOT and Slot blotting, PCR, DNA sequencing methods.

UNIT V:

Transgenic plants - insect and herbicide resistant plants - golden rice - transgenic animals - mice, sheep and fish.

Credits: 4 LT P: 4 2 0

20 hrs

15 hrs

20 hrs

20 hrs

- 1. Freifelder D, (2008). Molecular Biology . Narosa Publishing house, New Delhi
- 2. Desmond S.T. Nicholl. (2002). An Introduction to Genetic Engineering. Cambridge press
- 3. B.D. Singh. (2014). <u>Biotechnology</u> Kalyani Publishers

REFERENCES:

- 1. Brown, T.A. (2001). <u>Gene Cloning and DNA Analysis An Introduction</u>, 4thedn, Blackwell. Science Ltd.Oxford.
- 2. Primrose, S.B. (1991) Molecular Biotechnology 2ndedn. Pernima Publishing Corporation, New Delhi.
- 3. Watson, J. D., Gilman, M., Witkoweski, J. (1993). <u>Recombinant DNA</u>, 2nd edn, Scientific Books
- 4. Old R. W. and Primrose S. B., (1985), <u>Principles of Gene Manipulation</u>. 4th edn. Black well Scientific Publications, London.
- 5. Dubey and Maheshwari. (2007). <u>A textbook of Biotechnology</u>, S.Chand and company.

WEBSITES

http://www.reddit.com http://www.microbiology procedure.com http://www.gmac.gov.sg http://www.cls.casa.colostate.edu http://www.cdn.intechopen.com

QUESTION PAPER PATTERN

Time: 3Hours

Max Marks: 100

Section A- Answer all 10 questions (10 questions will be given covering all 5 Units) $10 \ge 20$ marks = 20 marks

Section B- Answer any 5 questions (8 questions will be given covering all 5 Units) 5 x 8 marks = 40 marks

SEMESTER VI INDUSTRIAL MICROBIOLOGY

Teaching Hours: 90 Hours Course code: MB15/6E/INM

OBJECTIVES:

This Paper provides Knowledge in

- Basics of Fermentation Technology
- Exploitation of Microorganisms for Human Welfare

COURSE CONTENT:

UNIT I:

Introduction to Fermentation Processes - Components of Fermentation Process. Types of Fermentation Processes - Batch, Continuous, Surface, Submerged, Solid Substrate Industrially Important Microorganisms.

UNIT II:

Strain Development and Media Formulation - Industrially Important Microorganisms - Isolation, Preservation and Improvement of Strains. Media Formulation- Crude Media Components, Antifoam agents, Buffering Agents. Sterilization -Batch and Continuous Process.

UNIT III:

Inoculum Development and Design of Fermentor - Development of Inoculum for various Fermentation Processes. Process Parameters - Aeration, Agitation, Temperature Regulation, Foam Regulation and pH Regulation. Fermentor: Basic Structure, Construction and Types - Typical Stirred Aerated fermentor, Tower fermentor, Airlift Fermentor.

UNIT IV:

Downstream Processing - Choice of recovery process, biomass separation from fermentation media-Precipitation, filtration, centrifugation, Cell disruption for intracellular products, solvent extraction and recovery, chromatography, membrane processes, drying, crystallization and whole broth processing. Industrial effluent treatment and quality assurance - GMP, QC of raw materials and Microbiological assays.

UNIT V:

Industrial Production - Antibiotics- Penicillin and Streptomycin, Amino acids - Glutamic acid and Lysine, Vitamins - Cyanocobalamine, Enzymes – Amylase -Alcoholic Beverages - Wine and Beer, Vinegar production, SCP - Bakers yeast.

10 hrs

20 hrs

20 hrs

20 hrs

20 hrs

Credits: 5 LT P: 4 2 0

- 1.Prescott and Dunn (2009).Industrial Microbiology, 4th edn C B S Publishers
- 2.Stanbury, P.F, Whitaker A. and Hall S.J. (1995). <u>Principles of Fermentation Technology</u>. 2nd edn. Pergamon press.
- 3. Patel A.H. Industrial Microbiology. (2011). Macmillan India Pvt Ltd

REFERENCES:

- 1.Casida L.E. (1968). Industrial Microbiology, Wiley Eastern Limited, New Delhi.
- 2.Reed, G. (1982). Industrial Microbiology. Mac Millan Publishers Ltd., Wisconsin
- 3.Patel A.H. (1985). Industrial Microbiology. Macmillan India Pvt Ltd.
- 4.Peppler H.J, and Periman D. (1979) <u>Fermentation Technology</u>, Vol 1 & 2, Academic Press, London
- 5.Baumberg, S., Hunter, I.S. and Rhodes, P.M. (1989). <u>Microbial Products New approaches</u>. Cambridge University Press, Cambridge, UK

WEBSITES:

http://www.yourarticlelibrary.com/micro-biology/bioreactors-fermenters-function-designs-
and-types/33628/.
http://www.slideshare.net/saileegurav/downstream-processing-30441992
http://www.srmuniv.ac.in/sites/default/files/files/PENCILLIN.pdf
http://microbiollogy.blogspot.com/2014/01/scope-of-biotechnology-industrial.html.
https://en.wikipedia.org/wiki/Alcoholic_beverage.

QUESTION PAPER PATTERN

Time: 3Hours

Max Marks: 100

Section A- Answer all 10 questions (10 questions will be given covering all 5 Units) 10 x 2 marks = 20 marks

Section B- Answer any 5 questions (8 questions will be given covering all 5 Units) 5 x 8 marks = 40 marks

MAJOR PRACTICAL- I MEDICAL MICROBIOLOGY

Teaching Hours: 90 Hours Course code: MB15/6C/PR3

Credits: 4 L T P 0 0 3

OBJECTIVES:

This paper provides

- Knowledge in handling clinical specimens
- Diagnosis of organisms responsible for the infection

COURSE CONTENT BACTERIOLOGY

1. General requirements for Collection and Transport of clinical specimens.

2. Gram's staining and Motility-Hanging Drop Method

3. Metachromatic granule staining, Capsule staining, Spore staining and Acid fast staining,

4. Isolation and Identification of Bacterial Pathogens from Clinical Specimens and their Biochemical

reactions.-Urine, Pus, Sputum.

- 5. Isolation and Identification of Bacterial Pathogens from Clinical Specimens and their Biochemical reactions.-Stool, Blood
- 6. Antimicrobial Sensitivity Testing-

(i)Disk Diffusion Method (ii) Broth Dilution Method

VIROLOGY

1. Isolation of Coliphage from Sewage sample.

2. Demonstration of inclusion bodies – Negri bodies. Electron Micrograph pictures of Common Viruses.

3. Demonstration of Egg inoculation-CAM and Yolk Sac

MYCOLOGY

1. Microscopic Examination of Fungi (LPCB Mount) causing Opportunistic Mycotic Infections

i) Candidiasis, ii) Aspergillosis, iii) Zygomycosis.

- 2. Slide Culture Technique for Demonstration of Fungi.
- 3. Microscopic Examination of Fungi causing Dermatophytosis *Microsporum sp.,, Trichophyton sp.,, Epidermophyton sp.,*
- 4. Carbohydrate Assimilation and Fermentation tests for Yeast
- 5. Germtube test for *Candida*.

PARASITOLOGY

- 1. Examination of Stool specimens for Parasites by Iodine Mount Techniques.
- 2. Concentration Methods for Stool specimens –Floatation Techniques- Saturated Salt and ZnSO₄ Floatation Method
- 3. Concentration Methods for Stool specimens Sedimentation techniques- Formol Ether Method
- 4. Examination of Blood Smear for Malarial Parasites.
- 5. Examination of Permanent Slides- Scolex of Taenia, Proglottid of Taenia.

QUESTION PAPER PATTERN:

Time: 6 Hours (3 Hrs, Two days)

Max Marks: 60

Major practical	: 25 marks
Minor practical	: 15 marks
Spotters (5 x 2)	: 10 marks
Record	: 10 marks

MAJOR PRACTICAL- II APPLIED MICROBIOLOGY

Teaching Hours: 90 Hours Course code: MB15/6C/PR4

Credits: 4 LTP003

OBJECTIVES:

This paper focus on

- Hands on Training on analysis of Spoiled Food
- Analysis of Air, Water and Soil samples.

COURSE CONTENT

- 1. Isolation and identification of microbes from spoiled fruits.
- 2. Isolation and identification of microbes from sea foods
- 3. Preparation of sauerkraut.
- 4. Detection of number of bacteria in milk by Breed's count
- 5. Detection of bacteria in milk by standard plate count method.
- 6. Dye reduction test MBRT.
- 7. Litmus milk reaction.
- 8. Microbiological examination of curd Gram staining.
- 9. Isolation of Lactobacilli from curd.
- 10. Enumeration of different bacteria, fungi, and actinomycetes from soil.
- 11. Isolation of Rhizobium from root nodules and seed inoculation with Rhizobium.
- 12. Study of Azolla-Anabaena relationship
- 13. Isolation of antibiotic producers from soil by crowded plate technique.
- 14. Microbiological water analysis for potability Multiple tube test.
- 15. Water analysis for total bacterial population by standard plate count method.
- 16. Demonstration of membrane filtration technique.
- 17. Study of airborne microorganisms (bacteria and fungi) in different places by settle
- 18. plate technique.
- 19. Immobilization of microorganism using gel entrapment method.

QUESTION PAPER PATTERN:

Time: 6 Hours (3 Hrs, Two days)

Max Marks: 60

Major practical	: 25 marks
Minor practical	: 15 marks
Spotters (5 x 2)	: 10 marks
Record	: 10 marks

47

SEMESTER III

ALLIED MICROBIOLOGY-I (Offered to II BSc Biochemistry students)

Teaching Hours: 60 Hours Course Code: MB15/3A/AM1

OBJECTIVES:

The Focus is on

- Basic Concepts in Microbiology
- Techniques in Microbiology

COURSE CONTENT

UNIT I: Introduction to Microbiology - Theories of Biogenesis and Abiogenesis. Contributions of Antony Von Leeuwenhoek, Louis Pasteur, Robert Koch, Alexander Flemming, Joseph Lister. Classification of Microorganisms-Five Kingdom Concept.

UNIT II:

Structural Characteristics of Bacteria - Morphology, Structure of Bacterial Cells - Capsule, Flagella, Fimbriae or Pili, Cell wall, Cell membrane, Mesosomes, Cytoplasmi, Cytoplasmic Inclusions, Spores.

UNIT III:

Basic Microbiology Techniques - Staining techniques - Simple and Differential Staining. Cultivation of Bacteria - Types of Media.

UNIT IV:

Pure Culture Techniques - Serial Dilution, Spread Plate, Pour Plate Technique, Streak Plate. Measurement of Microbial Growth (Turbidity, Biomass and Cell Count).

UNITV:

Sterilization-Physical Methods - Heat, Filtration, Chemical Methods - Alcohols, Phenols, Radiation - UV and Gamma Rays. Preservation Techniques -Mineral Oil Method, Lyophilisation.

10 hrs

15 hrs

10 hrs

10 hrs

15 hrs

Credits: 4

LTP310

- 1. Pelczar M.J., Chan E.C.S. and Kreig N.R.(2010). <u>Microbiology</u> 5th edn, McGraw-Hill, New York Publications.
- 2. Prescott L.M, Harley J.P and Klein D.A. (2005).<u>Microbiology</u> 6th edn, McGraw-Hill Publications.
- 3. R.C.Dubey ,D.K.Maheshwari,(2010) <u>Microbiology</u> 2nd edn , S.Chand and Company ltd. New Delhi.

REFERENCES:

- 1. Stanier R.Y, Ingraham, Wheelis M.L. Painte. (1999). <u>General Microbiology</u>, 5th edn, Mac Millan Press Ltd.
- 2. Tortora,G.J.,Funke, B.R.,Case, C.L.(2004). <u>Microbiology- An Introduction</u>, 8th edn, Benjamin-Cummings Pub Co.
- 3. Madigan M.T., Martinko J.M, Parker J. (2005). <u>Brock Biology of Microorganisms</u>, 11th edn, Pearson Prentice Hall International,Inc.
- 4. Alcamo's Jeffrey, C.Pommerville. (2004). <u>Fundamentals of Microbiology</u>, 7th edn, Jones and Bartlett Publishers.
- 5. Ronald.M.Atlas. (1996). Principles of Microbiology, 2nd edn, Wm.C.Brown Publishers.

WEBSITES:

http://www.microbes.info/resourcses/general microbiology/ http://www.simhq.org/microbiology http://www.brookscole.com/microbio http://www.austincc.edu/rohde/noteref.htm http://www.vvc.edu/academic/biology/MacKayP2/pamshome.htm (bau)

QUESTION PAPER PATTERN

Time: 3Hours

Max Marks: 100

Section A- Answer all 10 questions (10 questions will be given covering all 5 Units) 10 x 2 marks = 20 marks

Section B- Answer any 5 questions (8 questions will be given covering all 5 Units) 5 x 8 marks = 40 marks

SEMESTER-IV

ALLIED - MICROBIOLOGY II (Offered to II BSc Biochemistry students)

Teaching Hours: 60 Hours Course Code: MB15/4A/AM2

OBJECTIVES:

The Paper Focuses on different aspects of Food, Industrial, Soil, Water and Air Microbiology.

COURSE CONTENT

UNIT I:

Food Microbiology-Microbial Spoilage of Food - Fruits, Vegetables, Cereals. General Preservation Techniques - High Temperature, Low Temperature. Microbiology of Milk - Microbes in Milk and their Sources. Pasteurization, Phosphatase test. Fermented milk products - Curd, Butter Milk, Cheese.

UNIT II:

Soil Microbiology - Microbes in Soil - Bacteria, Fungi, Actinomycetes, Algae and Viruses, Rhizosphere. Nitrogen Cycle, Carbon Cycle. Biofertilizers - Rhizobium

UNIT III:

Water Microbiology - Sources of Water, Potable Water, Municipal Purification of Water, Water Borne Diseases.

UNIT IV:

Air Microbiology - Composition of Air, Microbes in Air, Enumeration of Microorganisms in Air, Air Sanitation, Air Borne Diseases.

UNIT V:

Industrial Microbiology Microbes in the production of Organic acids - Citric acid, Antibiotics -Penicillin, Alcoholic Beverages - Wine and Beer.

15 hrs

10 hrs

10 hrs

15 hrs

Credits: 4

LTP: 310

10 hrs

- 1. Pelczar M.J., Chan E.C.S. and Kreig N.R.(2010). <u>Microbiology</u>, 5th edn, McGraw-Hill New York Publications.
- 2. Prescott L.M, Harley J.P and Klein D.A. (2005).<u>Microbiology</u> 6th edn, McGraw-Hill Publications.
- 3. R.C.Dubey ,D.K.Maheshwari.(2010). <u>Microbiology</u> 2nd edn , S.Chand and Company ltd. New Delhi.

REFERENCES:

- 1. Stanier R.Y, Ingraham, Wheelis M.L. Painter. (1999). <u>General Microbiology</u>, 5th edn, Mac Millan PressLtd.
- 2. Tortora,G.J.,Funke, B.R.,Case, C.L.(2004). <u>Microbiology</u>-An Introduction, 8th edn, Benjamin-Cummings Pub Co.
- 3. Madigan M.T., Martinko J.M, Parker J. (2005). <u>Brock Biology of Microorganisms</u>, 11th edn, Pearson, Prentice Hall International,Inc.
- 4. Alcamo's Jeffrey, C.Pommerville. (2004). <u>Fundamentals of Microbiology</u>, 7th edn, Jones and Bartlett Publishers.
- 5. Ronald.M.Atlas. (1996). Principles of Microbiology, 2nd edn, Wm.C.Brown Publishers.

WEBSITES:

http://www.microbes.info/resourcses/general microbiology/ http://www.simhq.org/microbiology http://www.jbc.org http://www.science.jrank.org>pages>Water-Microbiology http://www.nptel.ac.in> courses

QUESTION PAPER PATTERN

Time: 3Hours

Max Marks: 100

Section A- Answer all 10 questions (10 questions will be given covering all 5 Units) 10 x 2 marks = 20 marks

Section B- Answer any 5 questions (8 questions will be given covering all 5 Units) $5 \times 8 \text{ marks} = 40 \text{ marks}$

ALLIED PRACTICAL

ALLIED MICROBIOLOGY (Offered to II BSc Biochemistry students)

Teaching Hours: 60 Hours Course Code: MB15/4A/PR2 Credits: 2 LTP 002

OBJECTIVES:

Students learn

- Basic Microbiological Techniques.
- Staining Techniques.

COURSE CONTENT

- 1. Cleaning and preparation of Glassware.
- 2. Instrumentation- Incubator, Water Bath and Micropipette
- 3. Microscopy Compound Microscope Principle, Operation, Uses and Maintenance
- 4. Sterilization Techniques by Moist Heat and Dry heat method.
- 5. Simple staining
- 6. Gram staining
- 7. Preparation of Liquid and solid Media Nutrient Broth, nutrient agar and slant
- 8. Demonstration of bacterial motility by Hanging drop method.
- 9. Enumeration of Bacteria from Air Samples- Standard Plate Count
- 10. Enumeration of Bacteria from Soil Samples- Standard Plate Count
- 11. Pure Culture Technique- Streaking
- 12. Methylene Blue Reduction test.
- 13. Observation of Pond Water for the Presence of Microorganisms Volvox, Nostoc, Oscillatoria.
- 14. Identification of Organisms that spoil bread by LPCB mount technique
- 15. Antibiotic Sensitivity testing Disk Diffusion method.
- 16. Effect of Temperature on the Growth of Microbes.

QUESTION PAPER PATTERN

(Time-3hrs, One day)

Max Marks-60

Major practical: 30 marksMinor practical: 20 marksRecord: 10 marks